بررسی کارایی و مقاومت فشاری ملات خودمتراکم حاوی میکرو سیلیس و فوق روان کننده

نویسنده

دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه تهران، تهران، ایران.

چکیده

در سال‌های اخیر، ملات خودتراکم به دلیل کارایی بالا به صورت گسترده در قسمت‌های مختلف پروژه‌های ساختمانی استفاده می‌شود. کارایی ملات‌های خودتراکم به ترکیب استفاده شده در طرح اختلاط و ویژگی-های اجزای آن مانند نوع سنگدانه‌ها، کیفیت فوق روان‌کننده، مواد افزودنی و … بستگی دارد. همچنین برای ارتقا خصوصیات ملات‌های سیمانی، استفاده از انواع افزودنی مانند خاکستر بادی، نانو ذرات و … رواج یافته است. با توجه به اهمیت بررسی خواص مکانیکی و کارایی ملات‌های سیمانی، در این مطالعه، به بررسی تاثیر میکروسیلیس و فوق روان‌کننده بر کارایی و مقاومت فشاری ملات خودتراکم پرداخته شده است. نتایج تحقیق نشان می دهد که افزودن میکروسیلیس باعث افزایش مقاومت فشاری، و کاهش جریان اسلامپ کوچک در ملات می-شود. همچنین نسبت آب به سیمان یکی از پارامتر های مهم در افزایش مقاومت فشاری کوتاه مدت است که نسبت به دیگر پارامتر ها تاثیر بیشتری دارد و با کاهش نسبت آب به سیمان مقاومت فشاری بیشتری حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the efficiency and compressive strength of self-compacting mortar containing micro-silica and super-lubricant

نویسنده [English]

  • Omid Bamshad
MSc student, Faculty of Technical and Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

In recent years, self-compacting mortar is widely used in various parts of construction projects due to its high efficiency. The efficiency of self-compacting mortars depends on the composition used in the mixing plan and the characteristics of its components, such as the type of aggregates, super-lubricating quality, additives, etc. Also, to improve the properties of cement mortars, the use of additives such as fly ash, nano particles, etc. has become popular. Considering the importance of examining the mechanical properties and efficiency of cement mortars, in this study, the effect of microsilica and super-lubricant on the efficiency and compressive strength of self-compacting mortars has been investigated. The research results show that the addition of microsilica increases the compressive strength and reduces the small slump flow in the mortar. Also, the ratio of water to cement is one of the important parameters in increasing the short-term compressive strength, which has a greater effect than other parameters, and by reducing the ratio of water to cement, more compressive strength was obtained.

کلیدواژه‌ها [English]

  • Compressive resistance
  • self-compacting mortar
  • micro silica
  • super lubricant
  1. Sahmaran, M., Christianto, H.A. & Yaman, I.O., 2006. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement & Concrete Composites, 28, pp.432–440.
  2. Nunes, S. et al., 2013. Mixture design of self-compacting glass mortar. Cement & Concrete Composites, 43, pp.1–11.
  3. Nepomuceno, M., Oliveira, L. & Lopes, S.M.R., 2012. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Construction and Building Materials, 26, pp.317–326.
  4. Güneyisi, E. et al., 2015. Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in self-compacting mortars. Construction and Building Materials, 74, pp.9–16.
  5. Yaseri, S. et al., 2018. The development of new empirical apparatuses for evaluation fresh properties of self-consolidating mortar: a theoretical and experimental study. Construction and Building Materials, 167, pp.631–648.
  6. Rizwan, S.A. & Bier, T.A., 2012. Blends of limestone powder and fly-ash enhance the response of self-compacting mortars. Construction and Building Materials, 27, pp.398–403.
  7. Eskandari-naddaf, H. & Kazemi, R., 2018. Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5 MPa. Procedia Manufacturing, 22, pp.392–398.
  8. Aziminezhad, M., Mahdikhani, M. & Memarpour, M.M., 2018. RSM-based modeling and optimization of self-consolidating mortar to predict acceptable ranges of rheological properties. Construction and Building Materials, 189, pp.1200–1213.
  9. Simsek, B., Tansel Ic, Y. & Simsek, E.H., 2013. A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemometrics and Intelligent Laboratory Systems, 125, pp.18–32.
  10. Mahdikhani, M. & Ramezanianpour, A.A., 2015. New methods development for evaluation rheological properties of self-consolidating mortars. CONSTRUCTION & BUILDING MATERIALS, 75, pp.136–143. Available at: http://dx.doi.org/10.1016/j.conbuildmat.2014.09.094.
  11. Mehrinejad Khotbehsara, M. et al., 2018. Effect of SnO2 , ZrO2 , and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash : Experimental observations and ANFIS predictions. Construction and Building Materials, 158, pp.823–834. Available at: https://doi.org/10.1016/j.conbuildmat.2017.10.067.
  12. Mehrinejad Khotbehsara, M. et al., 2015. Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Construction and Building Materials, 94, pp.758–766. Available at: http://dx.doi.org/10.1016/j.conbuildmat.2015.07.063.
  13. Madandoust, R. et al., 2015. An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction and Building Materials journal, 86, pp.44–50.
  14. Mohseni, E. et al., 2015. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction and Building Materials, 84, pp.331–340.
  15. Benli, A., Karatas, M. & Gurses, E., 2017. Effect of sea water and MgSO4 solution on the mechanical properties and durability of self-compacting mortars with fly ash /silica fume. Construction and Building Materials journal, 146, pp.464–474.
  16. ASTM C 150-07, 2008. Standard Specification for Portland Cement., American Society for Testing and Materials.
  17. ASTM C 128-01, 2003. Standard Test Method for Density , Relative Density ( Specific Gravity ), and Absorption of Fine Aggregate, American Society for Testing and Materials.
  18. ASTM C 136-01, 2001. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials.
  19. ASTM C494/C494M-17, 2002. Standard specification for chemical admixtures for concrete, American Society for Testing and Materials.
  20. EFNARC, 2005. The European Guidelines for Self-Compacting Concrete,
  21. Mehdipour, I. et al., 2013. Effect of mineral admixtures on fluidity and stability of self-consolidating mortar subjected to prolonged mixing time. Construction and Building Materials, 40, pp.1029–1037.
  22. Libre, N.A., Khoshnazar, R. & Shekarchi, M., 2010. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures. Construction and Building Materials, 24(7), pp.1262–1271.
  23. ASTM C 1610/C 1610M-06a, 2009. Standard Test Method for Static Segregation of Self-Consolidating Concrete Using, American Society for Testing and Materials.
  24. ASTM C 109/C 109M-02, 2000. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), American Society for Testing and Materials.